@ https://ntrs.nasa.gov/search.jsp?R=20170011315 2020-05-08T15:58:42+00:00Z

Playbook Data Analysis Tool: Collecting Interaction Data
from Extremely Remote Users

Bob Kanefsky!*, Jimin Zheng!, Ivonne Deliz?2, Jessica J. Marquez?3,
and Steven Hillenius3

I San José State University Research Foundation
2 ASRC Research & Technology Solutions
3 NASA Ames Research Center, Moffett Field, CA
{bob kanefsky, jimin.zheng, ivy.deliz, jessica.j.marquez, steven.r.hillenius} @nasa.gov

Abstract. Typically, user tests for software tools are conducted in person. At
NASA, the users may be located at the bottom of the ocean in a pressurized
habitat, above the atmosphere in the International Space Station, or in an
isolated capsule on a simulated asteroid mission. The Playbook Data Analysis
Tool (P-DAT) is a human-computer interaction (HCI) evaluation tool that the
NASA Ames HCI Group has developed to record user interactions with
Playbook, the group’s existing planning-and-execution software application.
Once the remotely collected user interaction data makes its way back to Earth,
researchers can use P-DAT for in-depth analysis. Since a critical component of
the Playbook project is to understand how to develop more intuitive software
tools for astronauts to plan in space, P-DAT helps guide us in the development
of additional easy-to-use features for Playbook, informing the design of future
crew autonomy tools.

Keywords:
usability - human-computer interaction - planning and scheduling - software

1. Introduction

When developing products, it is common for user researchers to iteratively test them
using user-research techniques dictated by their evaluation needs and accessibility of
target users. Our team, the Human-Computer Interaction Group at NASA Ames Re-
search Center, follows a similar process of user-centered design but has adapted these
techniques to work with our unique users and constraints. Since we are a user-focused
software development team, one of our core goals when building features and prod-
ucts is to ensure that they are easy to use and able to assist users in the work they need
to accomplish. User testing is a standard evaluation technique that we use to iterative-
ly improve our products. Ideally, we would sit side by side with users to evaluate us-
ability. This is adequate for initial evaluations in a lab or where the users’ work takes

mailto:LNCS@Springer.com
mailto:LNCS@Springer.com
mailto:LNCS@Springer.com
mailto:LNCS@Springer.com

place in an accessible environment, such as an office desk or ground-based mission
control facility. But for users in remote, inaccessible locations, this is not an option. In
the past, we balanced co-located, lab-based usability tests with product use in opera-
tional missions where feedback is only received through indirect comments, post-mis-
sion debriefs, or surveys. Gathering detailed, operational, in-use usability data from
our remote users — as is typical during in-person user tests — has not been possible. As
our products moved to mobile devices and became primarily used for remote mission
operations, this became a growing blind spot in terms of accurate usability evaluation.

Operational usability data is critical, as it provides the most realistic product usage
information in the context of the operational pressures of a mission; many of the fea-
tures and tools that we develop have drastically different use patterns when deployed
in the environment of an active mission. For example, a software feature that may
indicate no major usability issues in a lab setting may have significant usability prob-
lems in an operational environment. Notably, these users may be extremely inaccessi-
ble, onboard a spacecraft such as the International Space Station (ISS) or in a remote
isolated habitat such as the NASA Extreme Environment Mission Operations
(NEEMO) mission where several astronauts and engineers live underwater for weeks
at a time. Bandwidth is also a major concern; network resources and disk space are
limited for spacecraft or remote mission operations, so using typical screen capture or
video recording techniques are not practically viable, as operational mission needs
take priority. The common recording strategies mentioned earlier also add to the
overhead of gathering data and require manual analysis. In addition, since our prod-
ucts and users are mobile, typical physical-recording solutions involving a mount of
some sort or the setup of recording hardware in a fixed location would significantly
disrupt mission operations. Remote user testing is not new, but the unique user testing
constraints required us to develop a new software solution to gather remote usability
information without disrupting operational usage, both from the perspective of accu-
racy of collected data and mission operations.

In this paper, we present the development of P-DAT, the Playbook Data Analysis
Tool, an unobtrusive, web-based, structured, bandwidth-efficient, and mobile-friendly
tool developed to gather video-like playback of true operational usability data from
our mobile planning tool, Playbook.

2. Background
2.1. Playbook’s Role in Future Crew Autonomy

NASA conducts research on a variety of issues that affect human performance in
spaceflight. In particular, the Human Research Program (HRP) is investigating meth-
ods to mitigate the potentially detrimental effects on crew performance caused by
inadequate or poor interaction between astronauts and the complex systems used dur-
ing long duration space missions. For exploration-class missions beyond the Moon,

astronauts will need to have more autonomy, as Earth flight controllers will not be
immediately available once communication lag is measured in minutes instead of
seconds. Therefore, we have been developing and evaluating software aids that
specifically support crew autonomy.

An astronaut’s schedule in space is usually busy; aboard ISS, their day is filled
with science experiments, maintenance tasks, public outreach, as well as exercise and
other activities for their well-being (eating, talking to family, etc.). As they go through
their day, they may get ahead or fall behind on their schedules, depending on the
complexity of assigned tasks. Currently, mission controllers monitor astronauts
through video feeds, while astronauts frequently talk to mission controllers, updating
them on progress. Though effective now, these methods will be inefficient during fu-
ture long-duration missions to deep space. Enabling astronauts to manage their own
schedules may prove to be a more efficient way of conducting operations.

In order to investigate crew autonomy and this new concept of operations, our team
has developed and evaluated Playbook [1, 2], an easy-to-use, mobile-based, timeline
planning tool. Playbook has several key views — Timeline, Mission Log (a messaging
interface), Task List, and a Procedures list — that support crew members’ daily space-
flight operations. Playbook’s main function is to integrate and visualize the schedules
of multiple crew members and mission control in one view (Fig. 1). One of the advan-
tages over current timeline tools is that Playbook allows users to self-schedule, i.e., to
edit and manipulate activities in their timelines, rescheduling activities through simple
drag and drop interactions. However, many activities cannot be freely moved, because
their associated constraints are only met during certain time ranges. Spaceflight time-
lines must abide by dozens of these operational constraints; hence, activities are cur-
rently scheduled by a team of planners to meet those constraints. In order to accom-
modate this, Playbook provides visual feedback to the user about where an activity
could be rescheduled, e.g., to avoid a predicted communications gap in the middle of
a video conference. Additionally, Playbook allows crew members to create new activ-
ities and add “task list” activities, which are activities that can be completed if the
astronauts have free time in their day.

= Playbook for EXERCISE Zoom|In || Zoom Out || W Self-Schedule | MD2 +|
US/Central 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:04
SMT 2 € 00 8:00 20:00
COMM 10

@postsie... @ @ @obt-cev-emer-drill @ @cxercis... @mid... @exe... @clite-t... @clite-test-0...

EE}
@posisie... @ @ @obt-cev-emer-drill @exercis... @mid... @exe.. ® @pump

@mid... @exercis...

MS-2

@exercis... @glovebo... @exe...

Ground

Groups

Fig. 1. Playbook screenshot, showing example timelines for four crew members
and mission control as well as availabilitv of communication channels.

Our research goals for Playbook are to: 1) design and develop a technology plat-
form that enables the assessment of the feasibility and effectiveness of crew self-
scheduling and 2) evaluate crew autonomy and self-scheduling through the use of
Playbook in settings analogous to spaceflight environments. Over the last several
years, we have developed various Playbook features aimed at making self-scheduling
easy and intuitive, user-testing these feature implementations in Earth-based analog
missions along the way to verify their efficacy.

Analog missions are conducted in relatively safe and accessible locations such as
the ocean floor and volcanic terrain that serve as stand-ins for asteroids, the Moon,
and Mars. Analogs play a significant role in experimenting with space mission de-
signs, and some even perform Earth science in their own right. One such analog is the
NASA Extreme Environment Mission Operations (NEEMO), where astronauts live in
an underwater habitat for roughly two weeks. Our team has incrementally deployed
and evaluated Playbook for the purposes of studying crew autonomy in several
NEEMO missions [3]. Over the last several years, we have also deployed the software
for purposes of exploring crew autonomy in the Human Exploration Research Analog
(HERA) and the Biologic Analog Science Associated with Lava Terrains (BASALT)
missions. As of this paper’s writing, Playbook is also in the middle of being evaluated
aboard ISS through a series of technology demonstrations in collaboration with the
ISS Program and ISS Ops Planners (mission controllers who focus on timeline plan-
ning and integration).

In order to meet our research goals, we need to not only collect general feedback
from our product users, astronauts and various analog participants, but also establish a
systematic method to collect usability and usage data unobtrusively within the various
extreme environments during realistic mission operations.

2.2. Collection of Usability Data

HCI practitioners have at their disposal a variety of research methods to collect user
feedback in the form of usability data. Typically, these methods fall into one of two
categories: in-person or remote. As the name would suggest, in-person research re-
quires researchers to be co-located with users. Many of these methods — including
contextual inquiry, participatory observation, and in-person usability testing — are
beneficial in that they allow researchers to directly interact with (and adapt to) users,
and give researchers a chance to collect additional in-situ contextual information [4].
In contrast, remote research methods can be much more hands-off and do not require
researchers to be present at all. What remote methods sacrifice in immediate access to
users is made up for by having the benefits of being flexible and unobtrusive. Often-
times, remote methods use software to capture data in the background with no impact
to users. Many modern methods, including A/B testing, web analytics, and screen
capturing, can be utilized across many time zones and introduced seamlessly into the
tool to allow for these usability experiments at a larger scale.

Due to limitations of our team’s ability to conduct in-person usability research in
Earth-based analogs and in space, we established a remote data collection mechanism
in Playbook, P-DAT (Playbook Data Analysis Tool). In principle, we are leveraging
automated software logging to gather use data for post-processing. By continuously
capturing browser content and events, we are able to play back a session of data as if
the interaction had been recorded as a video. As HCI researchers and practitioners, we
are able to review Playbook interactions from any time users conducted self-sched-
uling. We are able to observe potential usability problems, like repeatedly attempting
to drag a fixed activity. Additionally, we might observe software bugs users might
have encountered while using the software tool.

Unobtrusively collecting software interaction data may also open the door to sys-
tematically determining usability metrics and patterns of interactions. For example,
one useful metric might be the number of times the timeline was zoomed per day or
the distance activities were dragged per rescheduling event. Information like this
might provide further insight with regards to the overall usability of the tool over
time. Furthermore, if information is captured in the context of a mission, it may also
serve a way to quantify performance in spaceflight or analog environments. As the
timeline shows scheduled activities, knowing when an activity was interacted with
(e.g., opening linked documents or marking complete) may provide data about time
on task, whether particular tasks are difficult to complete on time, or even if certain
times of day are less optimal schedules for certain tasks. Future research may focus on
certain patterns of interaction which in turn may be correlated to individual or group
behaviors. For the moment, we are focusing on providing video-like playback of the
data we have collected and on basic features to help find pertinent recordings.

3. P-DAT User Interface

Users interact with P-DAT using a graphical user interface that is composed of two
primary components: the replayer, and a timeline overview of all recorded usage,
which we call MetaPlaybook since it uses Playbook as a viewing tool.

3.1. Replayer

The replayer component of P-DAT is a user interface for playing back user sessions
that occurred in Playbook. The UI was designed specifically to allow its users to
watch playbacks of actual Playbook sessions as if they were videos recorded by aim-
ing a video camera at the screen or using screen capturing software. The controls are
designed to be similar to video playback software, augmented with timelines to give
users the ability to find specific events that occurred during the sessions. This allows
P-DAT users to identify trends in behavior and analyze actual interactions to help dis-
cover Playbook usability issues.

Playbook Data Analysis Tool

MD13 Playback XYZ & neemo21.nasaplaybook.com

11 00:15/03:05:06

Procedures
Tou

Keyboard
Drag
Resize
Message

interaction = tap/click

Tap/Click Count: 457 Tap/Click Total Duration: 01:25 1s0%) | @ Q| [+Row

Fig. 2. P-DAT User Interface screenshot.

In Fig. 2, the primary components of the replayer are: (1) Playback area,
(2) Progress bar with playback controls, (3) Event timeline, and (4) Query bar. Using
the logs of a user’s interactions in Playbook, P-DAT reconstructs what the user saw
while using Playbook. This reconstruction is then replayed in the playback area (1),
with conventional play and pause controls adjacent to a progress bar used for scrub-
bing through the playback (2).

The data has additional information beyond what is needed for reconstructing this
playback. It includes a log of interactions and on-screen elements, enabling the tool to
display where certain events occurred during the entire sequence of the Playbook ses-
sion. The event timeline (3) section of the interface visualizes these events and allows
a researcher to use P-DAT to easily identify where certain actions occurred. The rows
of the event timeline contain Playbook user interaction events such as taps/clicks,
keyboard inputs, drags, etc. These rows can also show which of Playbook’s specific
views were displayed: Timeline, Mission Log, Task List, Procedure, etc.. Along each
of these rows, the time where these events occurred is marked in gray. This allows
researchers to see precisely at what point in the session the actions occurred. Clicking
on any of these marked areas in the event timeline will reposition the playback to that
specific area, showing the researcher the actions that occurred at that time. For in-
creased fidelity, the event timeline can be zoomed in and out.

To extend the functionality of the event timeline, P-DAT has a query language.
Each row is generated from a predefined query, and the user may edit it, or add new
ones, using the query bar (4) at the bottom. This feature is analogous to the function
bar in spreadsheet software, where the formula for a specific cell is displayed when a
particular cell is selected. Clicking on any of the rows in P-DAT’s event timeline will
populate the query bar with the query corresponding to that row, and the user can edit
the formula to adjust what actions are highlighted. This feature also allows users to
construct complex queries to find specific events in session playbacks. Examples of
complex queries are:

e Click followed by drag followed within 10ms by drop

without any tap or click

e During view=Timeline, orientation=portrait

e During mode=edit, drag followed by drop
This query language allows users of P-DAT to define specific events that are relevant
to their research questions. For example, in Playbook, dragging anywhere in the
Timeline view normally scrolls the entire view so the user can see activities later or
earlier in the day that did not fit within the window, but if the Self-Scheduling button
is pressed first to enable editing mode, then dragging an activity moves it within its
timeline, where it can be dropped at a new time. That combination of button state and
user action defines a self-scheduling event that can be queried or filtered. This allows
finding P-DAT recordings, or sections of recordings, that are of importance to re-
searchers from a usability perspective. For example, we can search for mode errors:
cases in which a user appears to be attempting to move an activity but inadvertently
scrolls, or vice versa, and immediately reverses course.

3.2. MetaPlaybook

= MetaPlaybook MD 12+

US/Central | 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00
GMT 3:00 0 5:0C 6 7 8:00 9 20:0(0

Al =

Self sched.
mdil,m...
Messaging
msi:..

Task List

Collaborative

)

HE R A Crew e e e I —

o
— =

. e
iPad O —
B
[} |

Win Chrome
Win Firefox

iPhone

Fig. 3. MetaPlaybook consists of Playbook with data representing recordings as “activities.”

When Playbook is being used in operations, users open and close it throughout the
day and it can be used by several users at a time, which results in a large number of
recorded sessions for each day of a mission, necessitating a way to find relevant
recordings. We have chosen to use Playbook itself as a tool to visualize past Playbook
recordings in timeline form. A script generates a “plan” in which each “activity” is a
recorded session, and each row is a distinguishing characteristic of a recording (e.g.
whether certain features were used or Playbook was accessed from a specific
browser), and the activities link to that recording via the unique id of the recording to
open in P-DAT for analyzing. When we use Playbook to show this overview of
recordings Playbook for a mission, we call it MetaPlaybook.

4. Technical Development of Data Collection

Since the primary requirement for P-DAT was to record and replay a session as if a
video camera had been aimed at the screen, we considered three approaches that one
might take to achieve this. One could record the actual pixel values of the screen in a
series of rapid screen shots, many times per second, and store it in a compressed video
format. There are several commercial and free screen-capture tools available to do
exactly that. We did not pursue this option because video files, even compressed, tend
to be large, and communication bandwidth from orbit is a limited resource.

Alternatively, one could record every input event (every click or tap, drag gesture,
and so on) received by Playbook, along with the name of the event handler. (An event
handler, also called a listener, is a subroutine that is called each time an input is re-
ceived. For example, Playbook’s search button handles a click or tap by toggling its
colors and displaying or hiding a search-result sidebar.) Then, in order to replay the
events, one would start Playbook and call the same handlers with the same timing.
Since software behaves deterministically, this would theoretically produce exactly the
same visual results the user saw, provided one started with exactly the same applica-
tion data (the mission plan and history of previous changes) and replayed it with ex-
actly the same version of Playbook, among other variables. This was the approach we
initially implemented, but we realized it was a fragile one, since a single unrecorded
step would send the playback in the wrong direction. It would also have required us to
preserve snapshots of every version of the data and software used. Moreover, it would
have been burdensome to maintain, since the hooks in the software for recording
events would have had to keep up with the rapid development of new features in
Playbook.

Instead, we now directly record what Playbook displays, by listening for changes
to the HTML Document Object Model (DOM), the underlying data that the web
browser renders. We begin the recording log with the initial DOM that appears upon
page load. HTML consists entirely of elements, which can have attributes and contain
text or other elements, so the recording process consists of watching for changes to

any of these. We log an entry each time an element is added, deleted, or modified, or
its text or an attribute is changed. Each of these DOM-change entries is simply a terse
line of comma-separated text, referring to elements by previously assigned IDs. To
keep the size of the recordings manageable, we throttle the more rapid attribute
changes (representing animations) to a reasonable frame rate and omit some of the
intermediate stages; there is no need for the replay to look perfectly smooth.

While these DOM-change entries are sufficient to capture almost all visual changes
on the screen, there is still the need to record certain additional changes that do not
affect the DOM but do affect what the user sees, such as scroll position, window-size
changes, and keyboard input. We also record where the user touches the touchscreen,
and visualize that by overlaying fingerprint images during playback.

To support real-time playback, a third type of entry is needed in addition to DOM
changes and events: the passage of time. Relative timestamps are added between any
two entries that had a human-perceptible lag between them — whether a split-second
pause between an element flashing red and then disappearing, or a user hesitating in
thought for a moment between clicks, or the clock’s minute-long pauses between
ticks. (To save bandwidth, we omit timestamps between changes that are effectively
simultaneous: when the browser is working as fast as it can to redraw several ele-
ments moving in lockstep, we don’t record the milliseconds that slip by.)

When these DOM changes are reconstructed in a browser, this technique guaran-
tees a pixel-perfect recreation of exactly what the user saw, as if video frames had
been captured. (Large static resources, like style sheets and images, are external to the
document and not copied into each recording, so we take care to point P-DAT at con-
temporaneous versions of them.) This approach to recording data for video-like play-
back has an additional advantage besides data volume savings: it lends itself to auto-
mated analysis much better than pixel data would have. The inherent structure of the
collected data allows researcher to enter queries as described in the previous section.

In summary, the recorder component of P-DAT runs in the background while users
are interacting with Playbook; it listens to the DOM for visual changes, and also
records browser events in the DOM. When Playbook is opened in a browser, the
recorder writes a snapshot of the initial HTML to a text file on the server and gives it
a unique ID. As this content changes, it logs the changes, additions and deletions of
the DOM elements until the user closes the Playbook window. Changes to the DOM
include changes in any attributes of the elements. Using a URL with the unique ID for
each recording session, P-DAT can replay that session in another browser. One way to
locate the desired URL is to follow a link from the MetaPlaybook timeline. The query
language allows P-DAT users to find specific Playbook interactions in recordings, or
in segments of a recording.

S. Usage

We envision P-DAT as a tool for researchers to rely on when evaluating, after a mis-
sion, how the crew used Playbook. The crew’s experience with Playbook has implica-
tions for research questions relating to the larger ideas of crew autonomy and how a
minimally-sized crew traveling into deep space will operate outside of contact with
mission control on Earth.

Already, P-DAT has been used internally by the team on a regular basis for tasks
such as usability diagnoses and software debugging. As Playbook is deployed on var-
ious analog missions, like the ones mentioned earlier, the team regularly uses the
recordings to verify different usability issues seen in Playbook during mission opera-
tions. One particular example: during a NEEMO 21 deployment, members of the
Playbook team observed crew members experiencing an issue with a new “add activi-
ty” feature in Playbook. Because the Playbook team could not physically be with the
crew, who were in an underwater habitat, the team could only vaguely watch the issue
unfold via video cameras and screen-sharing software from mission control on the
surface. Post-mission, we were able to find the recording of the issue that the crew
experienced and view it repeatedly, allowing us to formulate a better understanding of
the problem. This insight led to the development of another new feature in the Play-
book tool that will potentially see deployment in NEEMO 22.

As another example, Playbook was recently deployed on the International Space
Station under the Crew Autonomous Self-Scheduling Test (CAST) research experi-
ment during Expeditions 50 and 51. A crew member using Playbook in space reported
a connectivity problem that might have prevented the astronaut’s last few changes
from taking effect or being sent back to Earth. Because of the way data is delivered to
and from ISS, the team on Earth could not immediately validate what the crew mem-
ber saw or determine if it was an unknown bug or an artifact of the network problem.
Meanwhile, on Earth, we observed a certain activity incorrectly disappearing and ap-
pearing at the beginning of the previous day. The crew member didn’t report seeing
anything amiss with that activity, and we wondered whether the disappearance was
visible onboard and related to the reported problem. We have no opportunity to direct-
ly speak to busy users in space to ask what they see on their screens; voice communi-
cations have to be relayed through at least two flight controllers. P-DAT was later
utilized as a crucial tool in diagnosing and solving the problem. We were able to lo-
cate recordings of the Playbook sessions running at the time and determine that the
bug we observed on the ground was not visible onboard.

Playbook was deployed in four 30-day HERA missions in 2016. In each mission,
the four analog crew members were given a series of self-scheduling (planning and
rescheduling) exercises to complete in Playbook. The exercises were varied, from
simple rescheduling to more complex, highly-constrained planning. From these mis-
sions alone, we accumulated over a hundred unique session recordings, most of which
are still being processed and analyzed with the help of P-DAT. Without P-DAT, track-

ing the number of instances of self-scheduling events for several 30-day missions
would have been tedious and complicated. We can leverage P-DAT to not only track
the number of times rescheduling occurred throughout the mission, but also the times
of day these events happened. We plan to apply this same analysis in the Hawai‘i
Space Exploration Analog and Simulation (HI-SEAS), an 8-month Mars analog mis-
sion. With P-DAT, we are able to collect detailed Playbook user data with little effort
from long-duration missions.

6. Future Work

We currently have the capability to analyze one recorded session at a time. Yet we
have collected hundreds of hours of data in thousands of separate recordings. The
main tool we have so far that can analyze more than one recording is MetaPlaybook
(see §3.2). More sophisticated features, applying the query language to multiple
recordings, may include:

e Searching for rare events of interest and playing the corresponding sections
of the recordings.

e Creating a montage that replays all of the occasions that match a given query,
to help a researcher discover new insights into how a particular feature was
used or common task was performed.

e (Creating graphs using proposed extended queries such as

o For mission NEEMO 21, plot the duration of
mode=edit as a function of time

o For mission HERA, plot the duration between
drag and drop as a function of time

o For mission HI-SEAS, make a bar chart of the
number of times mode=edit per day

e Generating charts to summarize answers to questions like “After the Self-
Scheduling button is pressed, how often is it followed by the Done button
and how often by the Cancel button?”

7. Conclusion

P-DAT has demonstrated the capability of discreetly capturing usability data in a
manner that is transparent to Playbook’s end-users. In our experience, P-DAT data has
already shown its utility, revealing potential usability patterns, helping diagnose soft-
ware bugs, and identifying metrics and events that are pertinent to Playbook usage as
well as spaceflight operations. As we continue to develop this analysis tool, P-DAT
may yet provide a method for long-duration, unobtrusive human performance collec-
tion and evaluation for mission controllers back on Earth and researchers investigat-
ing the effects and mitigations related to future human spaceflight performance.

References

1. Marquez, JJ., Pyrzak, G., Hashemi, S., McMillin, K., Medwid, J., et al.: Supporting Real-
Time Operations and Execution through Timeline and Scheduling Aids. 43rd International
Conference on Environmental Systems, Vail Colorado (2013)

2. Hashemi, S., Hillenius, S. @NASA: The User Experience of a Space Station. Speech at
SXSW Interactive, Austin, Texas. (2013)

3. Marquez, J.J., Hillenius, S., Deliz, I., Kanefsky, B., Zheng, J., Reagan, M.: Increasing Crew
Autonomy for Long Duration Exploration Missions: Self-Scheduling. IEEE Aerospace
Conference, Big Sky, Montana (2017)

4. Martin, B., Hanington, B. M. Universal methods of design: 100 ways to research complex
problems, develop innovative ideas, and design effective solutions. Beverly, Massachusetts:
Rockport (2012)

Acknowledgements

This work is funded by the NASA Human Research Program as a Directed Research
Project within Human Factors and Behavioral Performance.

